來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-01-08 16:01:30
1.過兩點(diǎn)有且只有一條直線
2.兩點(diǎn)之間線段最短
3.同角或等角的補(bǔ)角相等
4.同角或等角的余角相等
5.過一點(diǎn)有且只有一條直線和已知直線垂直
6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7.平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內(nèi)錯角相等,兩直線平行
11.同旁內(nèi)角互補(bǔ),兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內(nèi)錯角相等
14.兩直線平行,同旁內(nèi)角互補(bǔ)
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°
18.推論1直角三角形的兩個銳角互余
19.推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20.推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21.全等三角形的對應(yīng)邊、對應(yīng)角相等
22.邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23.角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24.推論有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25邊邊邊公理有三邊對應(yīng)相等的兩個三角形全等
26斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27.定理1:在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
28.定理2:到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30.等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等
31.推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
32.等腰三角形的頂角平分線、底邊上的中線和高互相重合
33.推論3:等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35.推論1:三個角都相等的三角形是等邊三角形
36.推論2:有一個角等于60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38.直角三角形斜邊上的中線等于斜邊上的一半
39.定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
40.逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42.定理1:關(guān)于某條直線對稱的兩個圖形是全等形
43.定理2:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44.定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對
稱軸上
45.逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條
直線對稱
46.勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即ab=c
47.勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系ab=c,那么這個三角形是直角
三角形
48.定理四邊形的內(nèi)角和等于360°
49.四邊形的外角和等于360°
50.多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51.推論任意多邊的外角和等于360°
52.平行四邊形性質(zhì)定理1平行四邊形的對角相等
53.平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54.推論夾在兩條平行線間的平行線段相等
55.平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60.矩形性質(zhì)定理1矩形的四個角都是直角
61.矩形性質(zhì)定理2矩形的對角線相等
62.矩形判定定理1有三個角是直角的四邊形是矩形
63.矩形判定定理2對角線相等的平行四邊形是矩形
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看