來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-01-19 17:16:06
配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。
6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進(jìn)一步解決問題的一種方法。
換元法可以把一個較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡,化難為易的目的。
7、分析法:在研究或證明一個命題時,又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個條件的成立還不顯然;
則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”
8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?rdquo;
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;
根據(jù)它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。
類比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函數(shù)、方程、不等式
常用的數(shù)學(xué)思想方法:
。1)數(shù)形結(jié)合的思想方法。
。2)待定系數(shù)法。
(3)配方法。
。4)聯(lián)系與轉(zhuǎn)化的思想。
。5)圖像的平移變換。
四、證明角的相等
1、對頂角相等。
2、角(或同角)的補(bǔ)角相等或余角相等。
3、兩直線平行,同位角相等、內(nèi)錯角相等。
4、凡直角都相等。
5、角平分線分得的兩個角相等。
6、同一個三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、等腰梯形同一底上的兩個角相等。
11、關(guān)系定理:同圓或等圓中,若有兩條。ɑ蛳摇⒒蛳倚木啵┫嗟,則它們所對的圓心角相等。
12、圓內(nèi)接四邊形的任何一個外角都等于它的內(nèi)對角。
13、同弧或等弧所對的圓周角相等。
14、弦切角等于它所夾的弧對的圓周角。
15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。
16、全等三角形的對應(yīng)角相等。
17、相似三角形的對應(yīng)角相等。
18、利用等量代換。
19、利用代數(shù)或三角計算出角的度數(shù)相等
20、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,并且這一點和圓心的連線平分兩條切線的夾角。
五、證明直線的平行或垂直
1、證明兩條直線平行的主要依據(jù)和方法:
。1)定義、在同一平面內(nèi)不相交的兩條直線平行。
(2)平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
。3)平行線的判定:同位角相等(內(nèi)錯角或同旁內(nèi)角),兩直線平行。
(4)平行四邊形的對邊平行。
。5)梯形的兩底平行。
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看