來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2020-03-27 18:35:33
方案二:盡可能多地對蔬菜進行精加工,沒來得及進行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為哪種方案獲利最多?為什么?
解:方案一:獲利140×4500=630000(元)
方案二:獲利15×6×7500+(140-15×6)×1000=725000(元)
方案三:設精加工x噸,則粗加工(140-x)噸
依題意得 =15 解得x=60
獲利60×7500+(140-60)×4500=810000(元)
因為第三種獲利最多,所以應選擇方案三。
2.某地區(qū)居民生活用電基本價格為每千瓦時0.40元,若每月用電量超過a千瓦時,則超過部分按基本電價的70%收費。
(1)某戶八月份用電84千瓦時,共交電費30.72元,求a
。2)若該用戶九月份的平均電費為0.36元,則九月份共用電多少千瓦時?應交電費是多少元?
解:(1)由題意,得0.4a+(84-a)×0.40×70%=30.72
解得a=60
。2)設九月份共用電x千瓦時,則 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90
所以0.36×90=32.40(元)
答:九月份共用電90千瓦時,應交電費32.40元.
3.某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機.已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元。
。1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你研究一下商場的進貨方案。
。2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,你選擇哪種方案?
解:按購A,B兩種,B,C兩種,A,C兩種電視機這三種方案分別計算,設購A種電視機x臺,則B種電視機y臺。
。1)①當選購A,B兩種電視機時,B種電視機購(50-x)臺,可得方程:1500x+2100(50-x)=90000
即5x+7(50-x)=300 2x=50 x=25 50-x=25
②當選購A,C兩種電視機時,C種電視機購(50-x)臺,
可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15
、郛斮廈,C兩種電視機時,C種電視機為(50-y)臺.
可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合題意
由此可選擇兩種方案:一是購A,B兩種電視機25臺;二是購A種電視機35臺,C種電視機15臺.
。2)若選擇(1)中的方案①,可獲利 150×25+250×15=8750(元)
若選擇(1)中的方案②,可獲利 150×35+250×15=9000(元)
9000>8750 故為了獲利最多,選擇第二種方案。
3.儲蓄、儲蓄利息問題
。ㄒ唬┲R點
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金×利率×期數(shù)
本息和=本金+利息
利息稅=利息×稅率(20%)
(3)利潤=每個期數(shù)內(nèi)的利息/本金×100%
。ǘ├}解析
1.為了準備6年后小明上大學的學費20000元,他的父親現(xiàn)在就參加了教育儲蓄,下面有三種教育儲蓄方式:
(1)直接存入一個6年期;
(2)先存入一個三年期,3年后將本息和自動轉(zhuǎn)存一個三年期;
一年2.25
三年2.70
六年2.88
(3)先存入一個一年期的,后將本息和自動轉(zhuǎn)存下一個一年期;你認為哪種教育儲蓄方式開始存入的本金比較少?
[分析]這種比較幾種方案哪種合理的題目,我們可以分別計算出每種教育儲蓄的本金是多少,再進行比較。
解:(1)設存入一個6年的本金是X元,依題意得方程
X(1+6×2.88%)=20000,解得X=17053
(2)設存入兩個三年期開始的本金為Y元,
Y(1+2.7%×3)(1+2.7%×3)=20000,X=17115
(3)設存入一年期本金為Z元 ,
Z(1+2.25%)6=20000,Z=17894
所以存入一個6年期的本金最少。
2.小剛的爸爸前年買了某公司的二年期債券4500元,今年到期,扣除利息稅后,共得本利和約4700元,問這種債券的年利率是多少(精確到0.01%).
解:設這種債券的年利率是x,根據(jù)題意有
4500+4500×2×X×(1-20%)=4700,解得x=0.03
答:這種債券的年利率為3%
3.白云商場購進某種商品的進價是每件8元,銷售價是每件10元(銷售價與進價的差價2元就是賣出一件商品所獲得的利潤).現(xiàn)為了擴大銷售量,把每件的銷售價降低x%出售,但要求賣出一件商品所獲得的利潤是降價前所獲得的利潤的90%,則x應等于( )
A.1 B.1.8 C.2 D.10
點撥:根據(jù)題意列方程,得(10-8)×90%=10(1-x%)-8,解得x=2,故選C
4.工程問題
(一)知識點
1.工程問題中的三個量及其關系為:
工作總量=工作效率×工作時間
2.經(jīng)常在題目中未給出工作總量時,設工作總量為單位1。即完成某項任務的各工作量的和=總工作量=1.
(二)例題解析
1.一項工程,甲單獨做要10天完成,乙單獨做要15天完成,兩人合做4天后,剩下的部分由乙單獨做,還需要幾天完成?
解:設還需要X天完成,依題意,
得(1/10+1/15)×4+1/15X=1
解得X=5
2.某工作,甲單獨干需用15小時完成,乙單獨干需用12小時完成,若甲先干1小時、乙又單獨干4小時,剩下的工作兩人合作,問:再用幾小時可全部完成任務?
解:設甲、乙兩個龍頭齊開x小時。由已知得,甲每小時灌池子的1/2,乙每小時灌池子的1/3 。
列方程:1/2×0.5+( 1/2+1/3 )x=2/3,
1/4+5/6x=2/3, 5/6x= 5/12
x= =0.5
x+0.5=1(小時)
3.某工廠計劃26小時生產(chǎn)一批零件,后因每小時多生產(chǎn)5件,用24小時,不但完成了任務,而且還比原計劃多生產(chǎn)了60件,問原計劃生產(chǎn)多少零件?
解:(X/26+5)×24-60=X,
X=780
4.某工程,甲單獨完成續(xù)20天,乙單獨完成續(xù)12天,甲乙合干6天后,再由乙繼續(xù)完成,乙再做幾天可以完成全部工程?
解:1 - 6(1/20+1/12 )= (1/12)X
X=2.4
5.已知甲、乙二人合作一項工程,甲25天獨立完成,乙20天獨立完成,甲、乙二人合5天后,甲另有事,乙再單獨做幾天才能完成?
解:1 -(1/25+1/20) ×5=(1/20)X
X=11
6.將一批工業(yè)最新動態(tài)信息輸入管理儲存網(wǎng)絡,甲獨做需6小時,乙獨做需4小時,甲先做30分鐘,然后甲、乙一起做,則甲、乙一起做還需多少小時才能完成工作?
解:1-1/6×1/2=(1/6+1/4)X,
X=11/5, 2小時12分
5.行程問題
。ㄒ唬┲R點
1.行程問題中的三個基本量及其關系:
路程=速度×時間 時間=路程÷速度 速度=路程÷時間
2.行程問題基本類型
(1)相遇問題: 快行距+慢行距=原距
。2)追及問題: 快行距-慢行距=原距
(3)航行問題: 順水(風)速度=靜水(風)速度+水流(風)速度
逆水(風)速度=靜水(風)速度-水流(風)速度
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看