來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-04-02 17:45:21
1、點(diǎn)、線、角
點(diǎn)的定理:過兩點(diǎn)有且只有一條直線
點(diǎn)的定理:兩點(diǎn)之間線段最短
角的定理:同角或等角的補(bǔ)角相等
角的定理:同角或等角的余角相等
直線定理:過一點(diǎn)有且只有一條直線和已知直線垂直
直線定理:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
2、幾何平行
平行定理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)
3、三角形內(nèi)角定理
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
4、全等三角形判定
定理:全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
邊邊邊定理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看