您現(xiàn)在的位置:中考 > 知識點庫 > 初中數(shù)學(xué)知識點 > 二次根式
02 二次根式化簡不正確
2023-03-14
03 合并同類型二次根式錯誤 例4計算:
2023-03-14
01 二次根式化簡不徹底 例 1 :計算:
2023-03-14
最簡二次根式 最簡二次根式的兩個特點: (1)被開方數(shù)不含分母. (2)被開方數(shù)中不含能開得盡方的因數(shù)或因式. 我們把滿足上述兩個條件的二次根式,叫作最簡二次根式.
2023-03-13
二次根式的乘法:(a 0,b 0) 關(guān)鍵提醒: 意義:兩個二次根式相乘,等于被開方數(shù)相乘,根指數(shù)不變。 被開方數(shù)a,b可以是數(shù)值非負(fù)的數(shù)字、字母或代數(shù)式。 例2:
2023-03-13
積的算術(shù)平方根的性質(zhì):積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積,即(a 0,b 0).
2023-03-13
二次根式的除法及商的算術(shù)平方根的性質(zhì) (1)二次根式的除法:(a 0,b 0). (2)商的算術(shù)平方根的性質(zhì):商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根,即(a 0,b 0). 關(guān)鍵提醒: 兩個二次根式相除,等于被
2023-03-13
二次根式的概念 一般地,我們把形如(a 0)的式子叫作二次根式,其中 稱為二次根號, a 叫作被開方數(shù)。 關(guān)鍵提醒: 二次根式有意義的條件:被開方數(shù)大于或等于0。 二次根式(a 0)中a可以表示數(shù)、單項式、多項式以及符合
2023-03-13
二次根式的性質(zhì) 關(guān)鍵提醒: 區(qū)分與,要注意平方與開方的先后順序,中,要求a 0才能使其有意義;中,a取任何實數(shù)都能使二次根式有意義。 例1: 已知|a|=5,=3,且ab 0,則a+b的值為() A.8 B.-2 C.8或-8 D.2或-2 解析
2023-03-13
編輯推薦: 2023年中考各科目重點知識匯總 最新中考資訊、中考政策、考前準(zhǔn)備、中考預(yù)測、錄取分?jǐn)?shù)線等 中考時間線的全部重要節(jié)點 盡在 中考網(wǎng) 微信公眾號
2023-03-13
【答案解析】 【答案解析】 【答案解析】 【答案解析】 【答案解析】 【答案解析】 【答案解析】 【答案解析】一個數(shù)的平方根有兩個,它們互為相反數(shù)。要求的是這個數(shù)的立方根,記得求完 a后還要算出這個數(shù),再求立
2023-03-13
編輯推薦: 2023年中考各科目重點知識匯總 最新中考資訊、中考政策、考前準(zhǔn)備、中考預(yù)測、錄取分?jǐn)?shù)線等 中考時間線的全部重要節(jié)點 盡在 中考網(wǎng) 微信公眾號
2023-02-02
初中數(shù)學(xué)專題 二次根式的應(yīng)用
2023-02-02
易錯點提示 1 、二次根式化簡不徹底 例 1計算: 2、二次根式化簡不正確 3、合并同類二次根式錯誤 例4計算: 4、運算定律誤用 5、忽略根式中或已知中隱含條件 6、忽略對字母的討論 7、運用公式=|ɑ|不當(dāng) 8、忽視有關(guān)性
2023-02-02
編輯推薦: 2023年中考各科目重點知識匯總 最新中考資訊、中考政策、考前準(zhǔn)備、中考預(yù)測、錄取分?jǐn)?shù)線等 中考時間線的全部重要節(jié)點 盡在 中考網(wǎng) 微信公眾號
2023-02-02
京ICP備09042963號-13 京公網(wǎng)安備 11010802027853號
中考網(wǎng)版權(quán)所有Copyright©2005-2019 actandsound.com. All Rights Reserved.